Stereo and chemical course of acid-catalyzed double bond migration of cholesta-5,7-dien-3 β-ol to 5α-cholesta-8,14-dien-3 β-ol

Hideharu Seto, ${ }^{* a}$ Shozo Fujioka, ${ }^{a}$ Hiroyuki Koshino, ${ }^{a}$ Suguru Takatsuto ${ }^{b}$ and Shigeo Yoshida ${ }^{a}$
${ }^{a}$ The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-0198, Japan
${ }^{b}$ Department of Chemistry, Joetsu University of Education, Joetsu-shi, Niigata 943-8512, Japan

Received (in Cambridge, UK) 2nd March 2000, Accepted 13th April 2000 Published on the Web 15th May 2000

Acid-catalyzed double bond migration of steroid 5,7-dienes to the $5 \alpha-8,14$-dienes, a well-known reaction in steroid chemistry, was reinvestigated by using cholesta-5,7-dien-3ß-ol 1, and the stereo and chemical course of this reaction was detailed. Treatment of $\mathbf{1}$ with 36% hydrochloric acid in refluxing ethanol for 3 h afforded a $6: 11: 65: 16: 2$ mixture of dienols (93%): 5α - and 5β-cholesta- $6,8(14)$-dien- 3β-ols 7a,b, 5α - and 5β-cholesta- 8,14 -dien- 3β-ols 2a,b, and 5α-cholesta-14,16-dien-3 β-ol 10a, along with a mixture of enones (1.7%): 5β-cholest- $8(14)$-, 5β-cholest-14- and 14 -epi- 5β-cholest- 8 -en- 3 -ones 11-13. The experiments using 7a,b and $\mathbf{2 a}, \mathbf{b}$ suggested the reaction sequence: $\mathbf{1} \rightarrow \mathbf{7 a}, \mathbf{b} \leftrightarrow 7,14$-dienols $\mathbf{8 a}, \mathbf{b} \leftrightarrow \mathbf{2 a}, \mathbf{b} \leftrightarrow 8(14), 15$-dienols $\mathbf{9 a}, \mathbf{b} \leftrightarrow \mathbf{1 0 a}, \mathbf{b}$, in which $\mathbf{8 a}, \mathbf{b} \leftrightarrow \mathbf{9}, \mathbf{b}$ should be also implicated. The initial step, $\mathbf{1}$ to $\mathbf{7 a , b}$ proceeded irreversibly with the stereoselectivity, ca. 7:3 of $5 \alpha-\mathrm{H}$ to $5 \beta-\mathrm{H}$. Dienols 7a, 8a, 2a and 10a with $5 \alpha-\mathrm{H}$ were identified, which were equilibrated at 6:0:92:2. Among dienols with $5 \beta-\mathrm{H}$, only $\mathbf{7 b}$ and $\mathbf{2 b}$ were identified, which were equilibrated at $2: 98$, and this interconversion proceeded in competition with an intramolecular hydride shift from the C-3 3 to $\mathrm{C}-6 \alpha$ of $\mathbf{7 b}$, leading to the formation of a mixture of enones 11-13. The considerable difference in activation energies between $\mathbf{1} \rightarrow \mathbf{7 a}, \mathbf{b}$ and $\mathbf{7 a}, \mathbf{b} \rightarrow \mathbf{8 a}, \mathbf{b} / \mathbf{1 1}-\mathbf{1 3}$ realized the predominant formation of $\mathbf{7 a}, \mathbf{b}$: by treatment at $30^{\circ} \mathrm{C}$ for $44 \mathrm{~h}, \mathbf{1}$ gave a 53:27:5:15 mixture (94%) of $\mathbf{7 a}, \mathbf{7 b}, \mathbf{8 a}$ and $\mathbf{2 a}$.

Introduction

Acid-catalyzed double bond migration of a 5,7-diene to the 8,14-diene with $5 \alpha-\mathrm{H}$ in steroids, e.g., cholesta- 5,7 -dien 3β-ol (7 -dehydrocholesterol: $\mathbf{1}$) to 5α-cholesta-8,14-dien- 3β-ol $\mathbf{2 a}$, is a well-known reaction, ${ }^{1,2}$ and the resulting $5 \alpha-8,14$-dienes have been employed to prepare the biosynthetic intermediates and their labelled compounds useful for the investigation of steroid biosynthesis of mammals, plants, etc. ${ }^{3-6}$ In recent years, we elucidated that fackel-J79, a dwarf mutant of Arabidopsis thaliana with unique phenotypes, had a defect of sterol C-14 reductase which reduces the 14 -double bond in brassinosteroid biosynthesis and thus accumulated three abnormal sterols, 2a and its ($24 R$)-24-methyl and -ethyl congeners, i.e., campesta- $8,14-$ dienol 5 and stigmasta-8,14-dien-3 β-ol 6 (sitosta-8,14-dienol) (Scheme 1). ${ }^{7}$ This was clearly verified by GC-MS analysis using the synthetic $5 \alpha-8,14$-dienols as the reference markers. However, in the synthesis, we could not attain the reported high yields under conventional reaction conditions, and found that these reactions were accompanied by the formation of several minor products, some of which were suspected to be the reaction intermediates and their C-5 epimers. Since there is no paper describing the actual features of this reaction including the chemical and stereo-selectivities, and the 8,14-diene functionality on the steroid should be a promising starting point for introducing a variety of substituents and functional groups to the C and D rings to assemble complex steroidal natural products, we undertook a study on the acid-catalyzed double bond migration of steroid 5,7 -diene to the $5 \alpha-8,14$-diene by using commercially available cholesta-5,7-dien-3 3 -ol 1 as a reaction substrate.

In this paper we detail the stereo and chemical course of this reaction on the basis of product analysis and equilibrium experiments, which enabled us to establish other acidic conditions to give steroid 6,8(14)-dienes predominantly. An intriguing reaction, an intramolecular hydride shift from the

$36 \% \mathrm{HCl}, \mathrm{EtOH}$
reflux

Scheme 1

C-3 α to C-6 α observed on 5β-cholesta-6,8(14)-dien-3 β-ol 7b leading to the formation of 5β-cholest- $8(14)$-, 5β-cholest-14and 14 -epi- 5β-cholest-8-en-3-ones 11-13, is also presented in this context.

Results and discussion

When cholesta-5,7-dien-3 β-ol 1, campesta-5,7-dienol 3^{8} and stigmasta-5,7-dienol 4^{9} were subjected to acid-catalyzed diene migration from the 5,7-diene to the corresponding 8,14-diene by following the conventional procedure, ${ }^{2}$ the yields of $5 \alpha-8,14-$ dienols, 2a, $\mathbf{5}$ and $\mathbf{6}$, were 55,53 and 50%, respectively. Therefore, to clarify whether the unsatisfactory yields compared to those reported are inevitable or not, we first analyzed the

Table 1 Reaction of dienols $\mathbf{1}, \mathbf{7 a}, \mathbf{b}$ and $\mathbf{2 a}, \mathbf{b}$, with 36% hydrochloric acid in ethanol

Entry	Substrate	Reaction temperature	Reaction time/h	Product ratio (\%) ${ }^{a}$	Combined yield (\%) ${ }^{b}$
1	1	reflux	3	$7 \mathbf{a}(5), 7 \mathrm{~b}(11), \mathbf{2 a}(64), \mathbf{2 b}(16), \mathbf{1 0 a}(2)$ a mixture of 11, $\mathbf{1 2}$ and 13 (2)	95
2	1	$30^{\circ} \mathrm{C}$	44	7a (53), 7b (27), 8a (5), 2a (15)	94
3	7a	reflux	3	7 a (7), 2a (90), 10a (3)	93
4	2a	reflux	3	$7 \mathrm{a}(6), \mathbf{2 a}(92), \mathbf{1 0 a}(2)$	93
5	7b	reflux	8	7b (4), 2b (56), 11 (24), 12 (14), 13 (2)	96
6	2b	reflux	8	7b (1), 2b (63), 11 (20), 12 (14), 13 (2)	85

${ }^{a}$ Ratios were calculated from ${ }^{1} \mathrm{H}$ NMR spectra in Entries 2-4, and by combination of the combined yields of dienol and enone mixtures, and their ${ }^{1}$ H NMR spectra in Entries 1, 5 and 6. ${ }^{b}$ After flash chromatography.

products formed from 1. A solution of $1(1.30 \mathrm{mmol})$ and 36% hydrochloric acid $\left(1.0 \mathrm{~cm}^{3}\right)$ in ethanol $\left(20 \mathrm{~cm}^{3}\right)$ was stirred at refluxing temperature for 3 h . After the usual aqueous work-up and flash chromatography on silica gel, a $6: 11: 65: 16: 2$ mixture of dienols, 5α-cholesta-6,8(14)-dien-3 3 -ol $7 \mathbf{a}, 5 \beta$-cholesta-$6,8(14)$-dien- 3β-ol $\mathbf{7 b}, \quad 5 \alpha$-cholesta- 8,14 -dien- 3β-ol $\mathbf{2 a}, \quad 5 \beta$ -cholesta-8,14-dien-3 3 -ol $2 \mathbf{2 b}$ and 5α-cholesta-14,16-dien- 3β-ol 10a, was obtained in 93% combined yield along with 1.7% of a mixture of enones, 5β-cholest- $8(14)$-en-3-one 11, 5β-cholest-14-en-3-one 12 and 14-epi- 5β-cholest-8-en-3-one 13 (Entry 1 in Table 1). The ratio of $\mathbf{7 a}, \mathbf{7 b}, \mathbf{2 a}, \mathbf{2 b}, \mathbf{1 0 a}$ was estimated from the ${ }^{1} \mathrm{H}$ NMR spectrum. The dienol mixture could be separated by high-performance liquid chromatography (HPLC), giving 7a, $\mathbf{7 b}, \mathbf{2 a}, \mathbf{2 b}$ and $\mathbf{1 0 a}$ in $6.4,9.0,55,14$ and 2.2% isolated yields, respectively. Cholest-5-en- 3β-ol was also isolated in 3.2% yield; this is a contaminant of commercial 1 . Fig. 1 shows a simplified HPLC spectrum of the dienol mixture, shown above, along with retention times of $\mathbf{1}$ and $\mathbf{8 a}$, the latter of which was obtained under other conditions (vide infra). Since the formation of enones $\mathbf{1 1 - 1 3}$ was assumed to be the result of an intramolecular hydride shift of $\mathbf{7 b}$ as discussed later, the com-

Fig. 1 Retention times/min of dienols identified in this work on HPLC. Simplified spectrum of a dienol mixture obtained by Entry 1 in Table 1 is shown above, where the length of each bar reflects the amount; others are shown below. Abbreviation Cho means cholest-5-en- 3β-ol which is a contaminant in commercial 1.
plete consumption of the starting material $\mathbf{1}$ indicated that the initial reaction of $\mathbf{1}$ leading to $6,8(14)$-dienes $7 \mathbf{a}, \mathbf{b}$ was irreversible. Therefore, the stereoselectivity of this reaction was calculated as $69: 31$ of $5 \alpha-\mathrm{H}$ to $5 \beta-\mathrm{H}$, which is obviously determined kinetically at the initial protonation at C-5 of $\mathbf{1}$.

In order to increase the stereoselectivity biased to $5 \alpha-\mathrm{H}$ by kinetic control, $\mathbf{1}$ was treated with 36% hydrochloric acid in a mixed solution of ethanol and benzene, $5: 1$, at $30^{\circ} \mathrm{C}$ (a cosolvent, benzene, was necessary due to the low solubility of $\mathbf{1}$ in ethanol). After 44 h , the starting material was completely consumed, as monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy, and a 53:27:5:15 mixture of 7a, 7b, 5α-cholesta-7,14-dien-3 β-ol $\mathbf{8 a}$ and 2a was obtained in 94% combined yield (Entry 2). Separation by HPLC gave $7 \mathbf{7 a}$ and $\mathbf{7 b}$ in 46 and 25% yields along with 8a (4.8%) and 2a (11%). The calculated stereoselectivity, 73:27 of $5 \alpha-\mathrm{H}$ to $5 \beta-\mathrm{H}$, was nearly the same as that attained under refluxing conditions, but the product distribution was completely different: i.e., 6,8(14)-dienols 7a,b predominantly formed. This indicates that the initial step, migration of the 5,7diene in $\mathbf{1}$ to the 6,8(14)-diene in 7a,b, proceeds much faster than further migrations or the intramolecular hydride shift of $\mathbf{7 b}$, and that $\mathbf{7 b}$ is more stable than $7 \mathbf{a}$. Other attempts to prevent the formation of $\mathbf{8 a}$ and $\mathbf{2 a}$, and to further enhance the $5 \alpha-\mathrm{H}$ selectivity, resulted in near failure. Among them, a cationic resin, Dowex 50 W , gave a similar result with some enhancement of the stereoselectivity. Treatment of 1 with Dowex 50 W resin in ethanol at $70^{\circ} \mathrm{C}$ for 51 h gave a 55:22:11:12 mixture of 7a, 7b, 8a and 2a in 96% combined yield, thus the stereoselectivity of $5 \alpha-\mathrm{H}$ to $5 \beta-\mathrm{H}$ being $78: 22$. After separation, the isolated yields of $\mathbf{7 a}, \mathbf{7 b}, \mathbf{8 a}$ and $\mathbf{2 a}$ were $48,21,6.8$ and 11%, respectively.

Further insight into the kinetic or thermodynamic correlation among dienols was obtained from reactions of the isolated 7a, 2a, 7b and $\mathbf{2 b}$ under the same acidic conditions at refluxing temperature. With 3 h treatment, both 7a and 2a gave a mixture of 7a, 2a and 10a in nearly the same ratio (Entries

Scheme 2 Events taking place in treatment of cholesta-5,7-dien-3 β-ol 1 with 36% hydrochloric acid in refluxing ethanol. Compounds in brackets are not identified. Protonation and deprotonation positions (I): $a: 5 \alpha-/ 14 \alpha-; b: 5 \beta-/ 14 \alpha-; c: 6-/ 15-; d: 15-/ 6-;$ e: 7-/9 $\alpha-; f: 9 \alpha-/ 7-; g$: $9 \alpha-/ 16-; h$: $16-/ 9 \alpha-$; $i: 8 \alpha-/ 17 \alpha-; j: 17 \alpha-/ 8 \alpha-; k: 7-/ 16-; /: 16-/ 7-; \quad m: 14-/ 3 \beta-\mathrm{OH}$, an intramolecular hydride shift of $3 \alpha-\mathrm{H}$ to the $\mathrm{C}-6 \alpha$ position.

3 and 4), which indicated that dienols $7 \mathbf{a}, 8 \mathbf{8 a}, \mathbf{2 a}, 9 \mathbf{9}, 10 \mathbf{a}$ with $5 \alpha-H$ were equilibrated at a ratio of $6: 0: 92: 0: 2$. On the other hand, the reaction of $\mathbf{7 b}$ proceeded much more slowly than that of $7 \mathbf{a}$. After 3 h , ca. 45% of $7 \mathbf{b}$ still remained, and after $8 \mathrm{~h} 7 \mathbf{b}$ afforded a $4: 56: 24: 14: 2$ mixture of $\mathbf{7 b}, \mathbf{2 b}$ and $\mathbf{1 1}-\mathbf{1 3}$ (Entry 5), while 2b gave a $1: 63: 20: 14: 2$ mixture of $\mathbf{7 b}, \mathbf{2 b}$ and 11-13 after 8 h (Entry 6). Assuming that dienols $\mathbf{8 b}$, $\mathbf{9 b}$ and $\mathbf{1 0 b}$ should be implicated like $8 \mathbf{a}, 9 \mathbf{a}$ and 10 a with $5 \alpha-\mathrm{H}$, these results suggest that dienols $\mathbf{7 b}, \mathbf{8 b}, \mathbf{2 b}, \mathbf{9 b}, \mathbf{1 0 b}$ with $5 \beta-\mathrm{H}$ are equilibrated at $2: 0: 98: 0: 0$, although this process is impeded by an irreversible conversion of $\mathbf{7 b}$ to enones $\mathbf{1 1} \mathbf{- 1 3}$. On the basis of these data, all events taking place in treatment of 1 with 36% hydrochloric acid in refluxing ethanol can be eventually summarized as illustrated in Scheme 2.

With respect to the organic reaction mechanism, conversion of $\mathbf{7 b}$ to enones $\mathbf{1 1 - 1 3}$, is of special interest, which doubtless involves an intramolecular hydride shift, as depicted in Scheme 3. A 1,4-hydride-shift from the C-3 $\mathbf{~ t o ~ C - ~} 6 \alpha$ occurs via a con-

7b-B

Scheme 3 Acid-catalysed intramolecular hydride shift of 5β-cholesta-6,8(14)-dien-3 β-ol 7b via an unstable conformer 7b-B.
former $\mathbf{7 b} \mathbf{b} \mathbf{B}$, which is one of the unstable conformers of $\mathbf{7 b}$ satisfying the stereoelectric requirement for the reaction, to give intermediary $\mathbf{1 4}, 5 \beta$-cholest-7-en-3-one or its 14 -epimer, which then isomerizes to the 8(14)-ene 11 and 14 -ene 12, and 14-epi5β-cholest-8-en-3-one $\mathbf{1 3}$ by acid. The suitability of $\mathbf{7 b}$-A as a stable conformer of $\mathbf{7 b}$ in a solution was deduced from the ${ }^{1} \mathrm{H}$ NMR spectrum: $3 \alpha-\mathrm{H}$ resonates at $\delta 4.07$ (br s, $\omega_{1 / 2} c a .7 \mathrm{~Hz}$) and has no large coupling constants due to an anti-vicinal coupling, indicating its equatorial orientation. It is well documented that secondary alcohols serve as hydride donors by their α-positioned hydrides as observed in the Meerwein-PonndorfVerley process, but no example has been reported so far of an
intramolecular shift of α - H of a hydroxy function under acidic conditions. ${ }^{10}$

The structures of compounds, 7a,b, 2b, 10a, 11-13, 5 and $\mathbf{6}$ were verified by MS, and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy. NMR experiments on these compounds except for $\mathbf{5}$ and $\mathbf{6}$, as well as the known $8 \mathbf{a}^{11}$ and $2 \mathbf{a}^{2}$ for reference, were carried out with 600 MHz by PFG-DQFCOSY, PFG-HMQC, PFG-HMBC and NOE difference experiments (400 MHz), by which all resonances were completely assigned (Experimental section). The stereochemistries of C-5 and C-9 of these compounds were respectively deduced from NOE difference experiments centered on $19-\mathrm{H}_{3}, 5-\mathrm{H}$ and $9-\mathrm{H}$. The NOE effects were observed between $19-\mathrm{H}_{3}$ and $5-\mathrm{H}$ in $\mathbf{7 b}, \mathbf{2 b}$ and $\mathbf{1 1 - 1 3}$ with $5 \beta-\mathrm{H}$, but not observed in 7a, 8a, 2a and 10a with $5 \alpha-\mathrm{H}$. No effect was observed at $9-\mathrm{H}$ of $\mathbf{7 a}, \mathbf{b}, \mathbf{8 a}, \mathbf{2 a}, \mathbf{b}, \mathbf{1 0 a}, \mathbf{1 1}$ and $\mathbf{1 2}$ with $9 \alpha-\mathrm{H}$ when the $19-\mathrm{H}_{3}$ was irradiated. Similarly, NOE correlations between 8-H and both of $18-\mathrm{H}_{3}$ and $19-\mathrm{H}_{3}$ in 10a and $\mathbf{1 2}$ demonstrated their 8β-configuration, and correlation between $14-\mathrm{H}$ and $18-\mathrm{H}_{3}$ in 13 indicated the 14β-configuration. Some selected ${ }^{1} \mathrm{H}$ NMR data are shown in Table 2. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of ($24 R$)-24-methyl and -ethyl congeners of $\mathbf{2 a}$ ($\mathbf{5}$ and $\mathbf{6}$), were reasonably similar to those of 2a.

In conclusion, a well-known reaction in steroid chemistry, acid-catalyzed double bond migration of steroid 5,7-dienes to the $5 \alpha-8,14$-dienes was reinvestigated by using cholesta-5,7-dien- $3 \beta-o l$ 1. The product analysis and equilibrium experiments suggested the reaction sequence: $\mathbf{1} \rightarrow \mathbf{7 a}, \mathbf{b} \leftrightarrow \mathbf{8 a}, \mathbf{b} \leftrightarrow \mathbf{2 a}, \mathbf{b} \leftrightarrow \mathbf{9 a}$, $\mathbf{b} \leftrightarrow \mathbf{1 0 a}, \mathbf{b}$, in which $\mathbf{8 a}, \mathbf{b} \leftrightarrow \mathbf{9 a}, \mathbf{b}$ should also be implicated. The initial step, $\mathbf{1}$ to $6,8(14)$-dienol 7a,b, proceeded irreversibly with stereoselectivity of $c a .7: 3$ of $5 \alpha-\mathrm{H}$ to $5 \beta-\mathrm{H}$. Dienols 7a, 8a, 2a and 10a with $5 \alpha-\mathrm{H}$ were identified, which were equilibrated at 6:0:92:2. On the other hand, among dienols with $5 \beta-\mathrm{H}$, only 7b and $\mathbf{2 b}$ were identified, which were equilibrated at $2: 98$. The conversion of $\mathbf{7 b}$ to $\mathbf{8 b}$ competed with an intramolecular hydride shift from the $\mathrm{C}-3 \alpha$ to $\mathrm{C}-6 \alpha$, resulting in the formation of enones 11-13. These results proved that moderate but not high yields of $5 \alpha-8,14$-dienols, $\mathbf{2 a}, \mathbf{5}$ and $\mathbf{6}$, from 5,7-dienols, $\mathbf{1 , 3}$ and $\mathbf{4}$, were reasonable for this acidic migration reaction. The considerable difference in activation energies between $\mathbf{1} \rightarrow \mathbf{7 a}, \mathbf{b}$ and $\mathbf{7 a}, \mathbf{b} \rightarrow \mathbf{8 a}, \mathbf{b}$ or 11-13 realized the reaction conditions for the predominant formation of 6,8(14)-dienols 7a,b from 1 .

Experimental

General

Melting points (mp) were determined on a Yanagimoto micromelting point apparatus and are uncorrected. NMR measurements were performed on a Bruker AC-300, JEOL JNM-A400 or JEOL JNM-A600 spectrometer. All spectra were recorded using standard pulse sequences. Chemical shifts were recorded as δ values in parts per million (ppm) relative to tetramethylsilane ($\delta 0 \mathrm{ppm}$) for ${ }^{1} \mathrm{H}$ or to the solvent $\left(\mathrm{CDCl}_{3}\right)(\delta 77.0 \mathrm{ppm})$ for ${ }^{13} \mathrm{C}$ as an internal reference. All J-values are given in Hz .

Table 2 Selected ${ }^{\mathbf{1}} \mathrm{H}$-NMR Data (δ : multiplicity, J in Hz) of dienols, 7a,b, 8a, 2a,b and 10a, and enones 11-13

Mass spectra, EI-MS and HR-EI-MS, were obtained with a JEOL-SX102 mass spectrometer. Analytical thin-layer chromatography (TLC) was conducted on micro-slides coated with Merck Kieselgel KG60F-254; the developed plates were stained with $10 \%(\mathrm{w} / \mathrm{v})$ vanillin in concentrated sulfuric acid at $180^{\circ} \mathrm{C}$. All reactions were carried out under a nitrogen atmosphere. Flash chromatography was conducted using silica gel FL-60D [Fuji Silysia Chemical Ltd.] as the adsorbent. High-performance liquid chromatography (HPLC) was conducted with Senshu Pak PG-S60-5251 (20 mm i.d. $\times 25 \mathrm{~cm}$; Senshu Scientific Co.) at a flow rate of 9.0 $\mathrm{cm}^{3} \min ^{-1}$; the peaks were detected by a refractive index detector. The ratios of mixed solvents were v / v. Commercial cholesta-5,7-dien-3 3 -ol 1 (7-dehydrocholesterol: Sigma) was purified by flash chromatography on silica gel before use, and still contained $c a .3 \%$ of cholest- 5 -en- 3β-ol. The ratios of compound mixtures were estimated from the ${ }^{1} \mathrm{H}$ NMR spectra.

Acid treatment of cholesta-5,7-dien-3p-ol 1

With $\mathbf{3 6 \%}$ hydrochloric acid $(\mathbf{H C l})$ at reflux temperature. A solution of cholesta-5,7-dien-3 β-ol $1(500 \mathrm{mg}, 1.30 \mathrm{mmol})$ and $36 \% \mathrm{HCl}\left(1.0 \mathrm{~cm}^{3}\right)$ in $\mathrm{EtOH}\left(20 \mathrm{~cm}^{3}\right)$ was refluxed for 3 h . After removal of EtOH under reduced pressure, the residue was diluted with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were successively washed with saturated aqueous NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was subjected to flash chromatography using hexane-AcOEt (4:1) as eluent. The fraction eluted at $R_{\mathrm{f}} 0.61$ gave compounds (8.5 mg , 1.7%) which had no ultra-violet absoption by 254 nm irradiation on TLC, and which were found to be a mixture of 5β-cholest-8(14)-en-3-one 11, 5β-cholest-14-en-3-one 12 and 14-epi-5 β-cholest-8-en-3-one 13 from the ${ }^{1} \mathrm{H}$ NMR spectrum. The isolation and structural assignment of 11-13 were performed from the experiment on treatment of 5β-cholesta-$6,8(14)$-dien- 3β-ol $7 \mathbf{b}$ with $36 \% \mathrm{HCl}$, as mentioned below.

The fraction eluted at $R_{\mathrm{f}} 0.18-0.27$ gave a dienol mixture (465 $\mathrm{mg}, 93 \%$) consisting of 5α-cholesta-6,8(14)-dien-3 β-ol 7a, 5β -cholesta-6,8(14)-dien-3 β-ol 7b, 5α-cholesta-8,14-dien-3 β-ol $\mathbf{2 a}$, 5β-cholesta- 8,14 -dien- 3β-ol $\mathbf{2 b}$ and 5α-cholesta-14,16-dien- 3β ol 10a in a ratio of $6: 11: 65: 16: 2$. This mixture was subjected to HPLC using hexane-AcOEt $(4: 1)$ as a mobile phase. Elutions at different $R_{\mathrm{t}} \mathrm{s}$ as shown in Fig. 1 gave 7b (45 mg , 9.0%), 5α-cholest- $5-\mathrm{en}-3 \beta$-ol ($16 \mathrm{mg}, 3.2 \%$), 2b ($71 \mathrm{mg}, 14 \%$), 7a ($32 \mathrm{mg}, 6.4 \%$), 10a ($11 \mathrm{mg}, 2.2 \%$) and 2a ($273 \mathrm{mg}, 55 \%$), successively.

5a-Cholesta-6,8(14)-dien-3 β-ol 7a. Colorless needles, mp $90-98{ }^{\circ} \mathrm{C}(\mathrm{MeOH}) ; \delta_{\mathrm{H}}(600 \mathrm{MHz}) 0.64\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.864$ $\left(3 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, 26-\mathrm{H}_{3}\right), 0.867\left(3 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, 27-\mathrm{H}_{3}\right), 0.89$ $\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.94\left(3 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, 21-\mathrm{H}_{3}\right), 1.07$ and 1.38 (each 1 H , each $\mathrm{m}, 22-\mathrm{H}_{2}$), 1.10 and 1.17 (each 1 H , each $\mathrm{m}, 24-$ $\left.\mathrm{H}_{2}\right), 1.14(1 \mathrm{H}, \mathrm{m}, 1 \alpha-\mathrm{H}), 1.14$ and 1.36 (each 1 H , each m, 23$\left.\mathrm{H}_{2}\right), 1.19(1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}), 1.26(1 \mathrm{H}$, ddd, $J 12.7,12.7$ and 3.4 $\mathrm{Hz}, 12 \alpha-\mathrm{H}), 1.38(1 \mathrm{H}, \mathrm{m}, 4 \beta-\mathrm{H}), 1.44$ and 1.90 (each 1 H , each $\left.\mathrm{m}, 16-\mathrm{H}_{2}\right), 1.47(1 \mathrm{H}, \mathrm{m}, 11 \beta-\mathrm{H}), 1.47(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}), 1.48(1 \mathrm{H}$, $\mathrm{m}, 2 \beta-\mathrm{H}), 1.52(1 \mathrm{H}, \mathrm{m}, 25-\mathrm{H}), 1.62(1 \mathrm{H}, \mathrm{m}, 11 \alpha-\mathrm{H}), 1.69(1 \mathrm{H}$, ddd, $J 13.2$, 3.4 and $3.4 \mathrm{~Hz}, 1 \beta-\mathrm{H}), 1.78(1 \mathrm{H}, \mathrm{m}, 4 \alpha-\mathrm{H}), 1.88$ $(1 \mathrm{H}, \mathrm{m}, 2 \alpha-\mathrm{H}), 1.92(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}), 2.01(1 \mathrm{H}$, ddd, $J 12.7,3.4$ and $3.4 \mathrm{~Hz}, 12 \beta-\mathrm{H}), 2.06(1 \mathrm{H}$, br dm, $J 13.2 \mathrm{~Hz}, 5-\mathrm{H}), 2.30$ $(1 \mathrm{H}, \mathrm{m}, 15 \beta-\mathrm{H}), 2.39(1 \mathrm{H}, \mathrm{m}, 15 \alpha-\mathrm{H}), 3.68(1 \mathrm{H}, \mathrm{tt}, J 10.7$ and $4.9 \mathrm{~Hz}, 3-\mathrm{H}), 5.26(1 \mathrm{H}, \mathrm{dd}, J 9.8$ and $1.5 \mathrm{~Hz}, 6-\mathrm{H}), 6.13(1 \mathrm{H}$, dd, $J 9.8$ and $2.9 \mathrm{~Hz}, 7-\mathrm{H}) ; \delta_{\mathrm{C}}(150 \mathrm{MHz}) 11.31(\mathrm{C}-19), 18.88$ (C-21), 19.24 (C-18), 19.73 (C-11), 22.56 (C-26), 22.79 (C-27), 23.68 (C-23), 24.93 (C-15), 27.35 (C-16), 28.02 (C-25), 31.48 (C-2), 34.77 (C-20), 35.15 (C-1), 35.68 (C-10), 35.88 (C-22), 36.59 (C-4), 36.76 (C-12), 39.52 (C-24), 43.65 (C-13), 44.75 (C-5), 48.15 (C-9), 55.92 (C-17), 71.44 (C-3), 125.23 (C-8), 125.75 (C-7), 129.38 (C-6), 147.54 (C-14); EI-MS m/z 384 $\left(\mathrm{M}^{+}, 11 \%\right), 366\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 48\right), 351\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{3}\right.$, 38), $271\left(\mathrm{M}^{+}-\mathrm{C}_{8} \mathrm{H}_{17}, 28\right), 253\left(\mathrm{M}^{+}-\mathrm{C}_{8} \mathrm{H}_{17}-\mathrm{H}_{2} \mathrm{O}, 100\right), 199$ (36); HR-EI-MS m/z M^{+}: Found, 384.3389. Calc. for $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}$, 384.3392.
5β-Cholesta-6,8(14)-dien-3 β-ol 7b. Colorless needles, mp $100^{\circ} \mathrm{C}(\mathrm{MeOH}) ; \delta_{\mathrm{H}}(600 \mathrm{MHz}) 0.76\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.866(3 \mathrm{H}$, d, $\left.J 6.8 \mathrm{~Hz}, 26-\mathrm{H}_{3}\right), 0.869\left(3 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, 27-\mathrm{H}_{3}\right), 0.89(3 \mathrm{H}, \mathrm{s}$, $\left.18-\mathrm{H}_{3}\right), 0.95\left(3 \mathrm{H}, \mathrm{d}, J 6.4 \mathrm{~Hz}, 21-\mathrm{H}_{3}\right), 1.08$ and 1.38 (each 1 H , each $\left.\mathrm{m}, 22-\mathrm{H}_{2}\right), 1.13\left(2 \mathrm{H}, 24-\mathrm{H}_{2}\right), 1.17$ and 1.37 (each 1 H , each $\left.\mathrm{m}, 23-\mathrm{H}_{2}\right), 1.21(1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}), 1.34(1 \mathrm{H}, \mathrm{m}, 12 \alpha-\mathrm{H}), 1.44$ and 1.89 (each 1 H , each $\left.\mathrm{m}, 16-\mathrm{H}_{2}\right), 1.45-1.55\left(2 \mathrm{H}, 11-\mathrm{H}_{2}\right), 1.48(1 \mathrm{H}$, $\mathrm{m}, 4 \alpha-\mathrm{H}), 1.48(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}), 1.53(1 \mathrm{H}, \mathrm{m}, 25-\mathrm{H}), 1.58(2 \mathrm{H}$, $\left.1-\mathrm{H}_{2}\right), 1.58\left(2 \mathrm{H}, 2-\mathrm{H}_{2}\right), 1.76(1 \mathrm{H}, \mathrm{m}, 4 \beta-\mathrm{H}), 2.04(1 \mathrm{H}$, ddd, $J 12.2,3.4$ and $3.4 \mathrm{~Hz}, 12 \beta-\mathrm{H}), 2.14(1 \mathrm{H}$, ddd, $J 12.7,5.4$ and $4.9 \mathrm{~Hz}, 5-\mathrm{H}), 2.28$ and 2.38 (each 1 H , each m, $\left.15-\mathrm{H}_{2}\right), 2.43(1 \mathrm{H}$, $\mathrm{m}, 9-\mathrm{H}), 4.09\left(1 \mathrm{H}, \mathrm{m}, \omega_{1 / 2}\right.$ ca. $\left.7 \mathrm{~Hz}, 3-\mathrm{H}\right), 5.52(1 \mathrm{H}, \mathrm{dd}, J 9.8$ and $5.4 \mathrm{~Hz}, 6-\mathrm{H}), 6.09(1 \mathrm{H}, \mathrm{d}, J 9.8 \mathrm{~Hz}, 7-\mathrm{H}) ; \delta_{\mathrm{C}}(150 \mathrm{MHz})$ 18.92 (C-21), 19.05 (C-18), 19.46 (C-11), 22.55 (C-26), 22.78 (C-27), 23.06 (C-19), 23.67 (C-23), 24.92 (C-15), 27.38 (C-16), 28.01 (C-25), 28.07 (C-2), 28.17 (C-1), 34.21 (C-9), 34.73 (C-20), 34.53 (C-10), 35.90 (C-22), 36.59 (C-4), 37.43 (C-12), 39.09 (C-5), 39.52 (C-24), 43.59 (C-13), 55.99 (C-17), 66.31 (C3), $124.46(\mathrm{C}-7), 124.86(\mathrm{C}-8), 129.82(\mathrm{C}-6), 147.04(\mathrm{C}-14)$; EIMS m/z $384\left(\mathrm{M}^{+}, 19 \%\right), 366\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 76\right), 351\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\right.$ $\left.\mathrm{CH}_{3}, 40\right), 271\left(\mathrm{M}^{+}-\mathrm{C}_{8} \mathrm{H}_{17}, 41\right), 253\left(\mathrm{M}^{+}-\mathrm{C}_{8} \mathrm{H}_{17}-\mathrm{H}_{2} \mathrm{O}\right.$,
100), 199 (50); HR-EI-MS $m / z \mathrm{M}^{+}$: Found, 384.3389. Calc. for $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}, 384.3392$.
5a-Cholesta-8,14-dien-3 β-ol 2a. Colorless scales, mp 111$113{ }^{\circ} \mathrm{C}(\mathrm{MeOH})\left[\right.$ lit., $\left.{ }^{2} \mathrm{mp} 116-117^{\circ} \mathrm{C}(\mathrm{MeOH})\right] ; \delta_{\mathrm{H}}(600 \mathrm{MHz})$ $0.82\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.868\left(3 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, 26-\mathrm{H}_{3}\right), 0.871(3 \mathrm{H}, \mathrm{d}$, $\left.J 6.8 \mathrm{~Hz}, 27-\mathrm{H}_{3}\right), 0.94\left(3 \mathrm{H}, \mathrm{d}, J 6.4 \mathrm{~Hz}, 21-\mathrm{H}_{3}\right), 0.99(3 \mathrm{H}, \mathrm{s}$, $19-\mathrm{H}_{3}$), 1.05 and 1.38 (each 1 H , each m, $22-\mathrm{H}_{2}$), 1.08 and 1.20 (each 1 H , each m, $24-\mathrm{H}_{2}$), 1.18 and 1.37 (each 1 H , each m, $\left.23-\mathrm{H}_{2}\right), 1.26(1 \mathrm{H}$, ddd, $J 13.2,13.2$ and $3.9 \mathrm{~Hz}, 1 \alpha-\mathrm{H}), 1.38(1 \mathrm{H}$, $\mathrm{m}, 4 \beta-\mathrm{H}), 1.40(1 \mathrm{H}, \mathrm{m}, 12 \alpha-\mathrm{H}), 1.44$ and 1.58 (each 1 H , each m, $\left.6-\mathrm{H}_{2}\right), 1.48(1 \mathrm{H}, \mathrm{m}, 2 \beta-\mathrm{H}), 1.50(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 1.52(1 \mathrm{H}, \mathrm{m}$, $17-\mathrm{H}), 1.53(1 \mathrm{H}, \mathrm{m}, 25-\mathrm{H}), 1.61(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}), 1.68(1 \mathrm{H}, \mathrm{m}, 4 \alpha-$ $\mathrm{H}), 1.85(1 \mathrm{H}$, ddd, $J 13.2,3.9$ and $3.0 \mathrm{~Hz}, 1 \beta-\mathrm{H}), 1.88(1 \mathrm{H}, \mathrm{m}$, $2 \alpha-\mathrm{H}), 2.03(1 \mathrm{H}, \mathrm{m}, 12 \beta-\mathrm{H}), 2.07$ and 2.35 (each 1 H , each $\left.\mathrm{m}, 16-\mathrm{H}_{2}\right), 2.10$ and 2.35 (each 1 H , each $\left.\mathrm{m}, 7-\mathrm{H}_{2}\right), 2.18(1 \mathrm{H}, \mathrm{m}$, $11 \beta-\mathrm{H}), 2.22(1 \mathrm{H}, \mathrm{m}, 11 \alpha-\mathrm{H}), 3.63(1 \mathrm{H}, \mathrm{tt}, J 10.7$ and 4.9 Hz , $3-\mathrm{H}), 5.36(1 \mathrm{H}, \mathrm{dd}, J 2.5 \mathrm{and} 2.0 \mathrm{~Hz}, 15-\mathrm{H}) ; \delta_{\mathrm{C}}(150 \mathrm{MHz}) 15.66$ (C-18), 18.34 (C-19), 18.87 (C-21), 21.84 (C-11), 22.53 (C-26), 22.78 (C-27), 23.73 (C-23), 25.28 (C-6), 27.99 (C-7), 27.99 (C-25), 31.69 (C-2), 34.04 (C-20), 35.31 (C-1), 35.90 (C-16), 36.10 (C-22), 36.52 (C-10), 36.93 (C-12), 38.30 (C-4), 39.50 (C-24), 45.02 (C-13), 40.93 (C-5), 57.22 (C-17), 71.00 (C-3), 117.41 (C-15), 123.07 (C-8), 140.84 (C-9), 151.08 (C-14); EI-MS $m / z 384\left(\mathrm{M}^{+}, 100 \%\right), 369\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 15\right), 351\left(\mathrm{M}^{+}-\mathrm{CH}_{3}-\right.$ $\left.\mathrm{H}_{2} \mathrm{O}, 30\right)$, $271\left(\mathrm{M}^{+}-\mathrm{C}_{8} \mathrm{H}_{17}, 20\right)$; HR-EI-MS $m / z \mathrm{M}^{+}$: Found, 384.3395. Calc. for $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}, 384.3392$.
5β-Cholesta-8,14-dien-3 β-ol 2b. Colorless needles, mp $50-$ $53{ }^{\circ} \mathrm{C}(\mathrm{MeOH}) ; \delta_{\mathrm{H}}(600 \mathrm{MHz}) 0.83\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.869(3 \mathrm{H}, \mathrm{d}$, $\left.J 6.8 \mathrm{~Hz}, 26-\mathrm{H}_{3}\right), 0.871\left(3 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, 27-\mathrm{H}_{3}\right), 0.94(3 \mathrm{H}, \mathrm{d}$, $J 6.3 \mathrm{~Hz}, 21-\mathrm{H}_{3}$), 1.06 and 1.38 (each 1 H , each m, 22- H_{2}), 1.10 and 1.18 (each 1 H , each m, 24- H_{2}), $1.12\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 1.17$ and 1.38 (each 1 H , each m, 23- H_{2}), $1.37(1 \mathrm{H}, \mathrm{m}, 12 \alpha-\mathrm{H}), 1.46$ and 1.58 (each 1 H , each $\left.\mathrm{m}, 2-\mathrm{H}_{2}\right), 1.53(1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}), 1.53(1 \mathrm{H}, \mathrm{m}$, $25-\mathrm{H}), 1.56$ and $1.70\left(\right.$ each 1 H , each m, $6-\mathrm{H}_{2}$), 1.58 and 1.67 (each 1 H , each m, $\left.1-\mathrm{H}_{2}\right), 1.63(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}), 1.68(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}), 1.70\left(2 \mathrm{H}, 4-\mathrm{H}_{2}\right), 1.98$ and 2.33 (each 1 H , each m, $7-\mathrm{H}_{2}$), $2.03(1 \mathrm{H}, \mathrm{m}, 12 \beta-\mathrm{H}), 2.07(1 \mathrm{H}, \mathrm{m}, 11 \alpha-\mathrm{H}), 2.08(1 \mathrm{H}, \mathrm{m}, 16 \beta-$ $\mathrm{H}), 2.24(1 \mathrm{H}, \mathrm{m}, 11 \beta-\mathrm{H}), 2.37(1 \mathrm{H}, \mathrm{m}, 16 \alpha-\mathrm{H}), 3.89(1 \mathrm{H}, \mathrm{m}$, $\omega_{1 / 2}$ ca. $\left.16 \mathrm{~Hz}, 3-\mathrm{H}\right), 5.39(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 15-\mathrm{H})$; $\delta_{\mathrm{C}}(150 \mathrm{MHz})$ 15.33 (C-18), 18.84 (C-21), 22.54 (C-26), 22.77 (C-11), 22.77 (C-27), 23.69 (C-23), 24.87 (C-6), 24.87 (C-7), 25.09 (C-19, br), 27.99 (C-25), 30.96 (C-1), 31.16 (C-2), 33.97 (C-20), 35.85 (C-16), 36.09 (C-22), 36.92 (C-4), 36.92 (C-12), 36.98 (C-10, br), 39.29 (C-5, br), 39.50 (C-24), 45.07 (C-13), 57.20 (C-17), 67.33 (C-3), 117.57 (C-15), 123.54 (C-8), 138.92 (C-9, br), 150.77 (C-14); EI-MS m/z 384 (M ${ }^{+}, 100 \%$), 369 $\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 44\right), 351\left(\mathrm{M}^{+}-\mathrm{CH}_{3}-\mathrm{H}_{2} \mathrm{O}, 35\right), 271\left(\mathrm{M}^{+}-\right.$ $\mathrm{C}_{8} \mathrm{H}_{17}, 9$); HR-EI-MS $m / z \mathrm{M}^{+}$: Found, 384.3398. Calc. for $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}, 384.3392$.
$5 a$-Cholesta-14,16-dien-3ß-ol 10a. Colorless wax; $\delta_{\mathrm{H}}(600$ $\mathrm{MHz}) 0.60(1 \mathrm{H}$, ddd, $J 12.2,11.2$ and $3.9 \mathrm{~Hz}, 9-\mathrm{H}), 0.84(3 \mathrm{H}, \mathrm{d}$, $\left.J 6.8 \mathrm{~Hz}, 26-\mathrm{H}_{3}\right), 0.85\left(3 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, 27-\mathrm{H}_{3}\right), 0.86(1 \mathrm{H}, \mathrm{m}$, $12 \alpha-\mathrm{H}), 0.92\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.97\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.97(1 \mathrm{H}$, ddd, $J 13.2,13.2$ and $3.4 \mathrm{~Hz}, 1 \alpha-\mathrm{H}), 1.05\left(3 \mathrm{H}, \mathrm{d}, J 6.3 \mathrm{~Hz}, 21-\mathrm{H}_{3}\right)$, $1.14(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 1.15\left(2 \mathrm{H}, 24-\mathrm{H}_{2}\right), 1.26\left(2 \mathrm{H}, 23-\mathrm{H}_{2}\right), 1.33$ and 1.59 (each 1 H , each $\mathrm{m}, 4-\mathrm{H}_{2}$), 1.38 and 1.50 (each 1 H , each m , $\left.22-\mathrm{H}_{2}\right), 1.39(1 \mathrm{H}, \mathrm{m}, 11 \beta-\mathrm{H}), 1.40$ and 1.48 (each 1 H , each m, $6-\mathrm{H}_{2}$), 1.45 and $1.80\left(\right.$ each 1 H , each $\mathrm{m}, 2-\mathrm{H}_{2}$), 1.48 and 1.94 (each 1 H , each m, $\left.7-\mathrm{H}_{2}\right), 1.50(1 \mathrm{H}, \mathrm{m}, 25-\mathrm{H}), 1.60(1 \mathrm{H}, \mathrm{m}$, $11 \alpha-\mathrm{H}), 1.75(1 \mathrm{H}, \mathrm{ddd}, J 13.2,3.4$ and $3.4 \mathrm{~Hz}, 1 \beta-\mathrm{H}), 1.96(1 \mathrm{H}$, $\mathrm{m}, 12 \beta-\mathrm{H}), 2.21(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.29(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}), 3.59(1 \mathrm{H}, \mathrm{tt}$, $J 11.2$ and $4.9 \mathrm{~Hz}, 3-\mathrm{H}), 5.81(1 \mathrm{H}, \mathrm{dd}, J 2.0$ and $2.0 \mathrm{~Hz}, 15-\mathrm{H})$, $5.96(1 \mathrm{H}, \mathrm{d}, J 2.0 \mathrm{~Hz}, 16-\mathrm{H}) ; \delta_{\mathrm{C}}$ (150 MHz) 12.42 (C-19), 18.72 (C-18), 21.32 (C-11), 22.66 (C-26), 22.66 (C-27), 22.99 (C-21), 25.56 (C-23), 27.92 (C-25), 28.47 (C-6), 29.72 (C-7), 31.46 (C-2), 31.46 (C-20), 35.55 (C-8), 35.96 (C-10), 36.16 (C-12), 37.38 (C-1), 38.13 (C-4), 38.25 (C-22), 39.20 (C-24), 44.71 (C-5), 53.57 (C-13), 57.47 (C-9), 71.25 (C-3), 117.62 (C-15), 120.98 (C-16), 158.79 (C-14), 164.10 (C-17); EI-MS m/z 384 $\left(\mathrm{M}^{+}, 13 \%\right), 366\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 30\right), 299\left(\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{13}, 45\right)$,
$281\left(\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{13}-\mathrm{H}_{2} \mathrm{O}, 100\right)$; HR-EI-MS $\mathrm{m} / \mathrm{z} \mathrm{M} \mathrm{M}^{+}$: Found, 384.3400. Calc. for $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}, 384.3392$.

With $\mathbf{3 6} \% \mathbf{H C l}$ at $\mathbf{3 0}{ }^{\circ} \mathbf{C}$. A solution of $\mathbf{1}(250 \mathrm{mg}, 0.65 \mathrm{mmol})$ and $36 \% \mathrm{HCl}\left(0.5 \mathrm{~cm}^{3}\right)$ in EtOH $\left(10 \mathrm{~cm}^{3}\right)$ and benzene $\left(2 \mathrm{~cm}^{3}\right)$ was stirred at $30{ }^{\circ} \mathrm{C}$ for 44 h . The same work-up and flash chromatography as described above gave a $53: 27: 5: 15$ dienol mixture ($235 \mathrm{mg}, 94 \%$) of 7a, 7b, 5α-cholesta-7,14-dien-3 β-ol 8a and 2a. Separation by HPLC using hexane- AcOEt ($4: 1$) as a mobile phase gave 7b ($63 \mathrm{mg}, 25 \%$), 7a ($115 \mathrm{mg}, 46 \%$), 2a (28 $\mathrm{mg}, 11 \%)$ and $8 \mathrm{a}\left(R_{\mathrm{t}} 32.2 \mathrm{~min}: 12 \mathrm{mg}, 4.8 \%\right)$, successively.
5a-Cholesta-7,14-dien-3 β-ol 8a. Colorless plates, mp 78$80^{\circ} \mathrm{C}(\mathrm{MeOH})$ [lit., $\left.{ }^{11} \mathrm{mp} 103-105^{\circ} \mathrm{C}(\mathrm{MeOH})\right] ; \delta_{\mathrm{H}}(600 \mathrm{MHz})$ $0.79\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.83\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.868(3 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}$, $\left.26-\mathrm{H}_{3}\right), 0.871\left(3 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, 27-\mathrm{H}_{3}\right), 0.92(3 \mathrm{H}, \mathrm{d}, J 6.0 \mathrm{~Hz}$, $\left.21-\mathrm{H}_{3}\right), 1.05$ and $1.36\left(\right.$ each 1 H , each m, 22- H_{2}), $1.07(1 \mathrm{H}, \mathrm{m}$, $1 \alpha-\mathrm{H}), 1.14$ and 1.36 (each 1 H , each $\mathrm{m}, 23-\mathrm{H}_{2}$), $1.15(2 \mathrm{H}$, $\left.24-\mathrm{H}_{2}\right), 1.25(1 \mathrm{H}, \mathrm{m}, 4 \beta-\mathrm{H}), 1.31(1 \mathrm{H}, \mathrm{m}, 12 \alpha-\mathrm{H}), 1.41(1 \mathrm{H}, \mathrm{m}$, $2 \beta-\mathrm{H}), 1.42(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 1.49(1 \mathrm{H}, \mathrm{m}, 11 \beta-\mathrm{H}), 1.53(1 \mathrm{H}, \mathrm{m}$, $25-\mathrm{H}), 1.57(1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}), 1.58(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}), 1.60(1 \mathrm{H}, \mathrm{m}$, $11 \alpha-\mathrm{H}), 1.72(1 \mathrm{H}, \mathrm{m}, 4 \alpha-\mathrm{H}), 1.72(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}), 1.78-1.90(2 \mathrm{H}$, $\left.6-\mathrm{H}_{2}\right), 1.81(1 \mathrm{H}, \mathrm{m}, 2 \alpha-\mathrm{H}), 1.85(1 \mathrm{H}, \mathrm{m}, 1 \beta-\mathrm{H}), 1.90(1 \mathrm{H}, \mathrm{m}$, $16-\mathrm{H}), 2.03(1 \mathrm{H}$, ddd, $J 12.2,3.4$ and $3.4 \mathrm{~Hz}, 12 \beta-\mathrm{H}$), 2.31 (1 H , ddd, $J 15.6,6.8$ and $3.4 \mathrm{~Hz}, 16-\mathrm{H}), 3.60(1 \mathrm{H}, \mathrm{tt}, J 11.2$ and 4.4 $\mathrm{Hz}, 3-\mathrm{H}), 5.50(1 \mathrm{H}, \mathrm{dd}, J 3.4$ and $2.0 \mathrm{~Hz}, 15-\mathrm{H}), 5.75(1 \mathrm{H}, \mathrm{m}$, $7-\mathrm{H}) ; \delta_{\mathrm{C}}(150 \mathrm{MHz}) 12.37$ (C-19), 16.50 (C-18), 18.92 (C-21), 20.97 (C-11), 22.55 (C-26), 22.81 (C-27), 23.75 (C-23), 28.01 (C-25), 30.28 (C-6), 31.53 (C-2), 33.88 (C-10), 34.12 (C-20), 35.16 (C-16), 36.06 (C-22), 36.80 (C-1), 37.92 (C-4), 39.50 (C-24), 39.68 (C-5), 40.16 (C-12), 46.47 (C-13), 49.76 (C-9), 58.70 (C-17), 70.95 (C-3), 119.45 (C-15), 120.17 (C-7), 134.51 (C-8), $152.07(\mathrm{C}-14) ;$ EI-MS $m / z 384\left(\mathrm{M}^{+}, 39 \%\right), 366\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{H}_{2} \mathrm{O}, 74\right), 351\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{3}, 53\right), 271\left(\mathrm{M}^{+}-\mathrm{C}_{8} \mathrm{H}_{17}, 46\right)$, $253\left(\mathrm{M}^{+}-\mathrm{C}_{8} \mathrm{H}_{17}-\mathrm{H}_{2} \mathrm{O}, 100\right)$; HR-EI-MS $\mathrm{m} / \mathrm{z} \mathrm{M} \mathrm{M}^{+}$: Found, 384.3406. Calc. for $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}, 384.3392$.

With Dowex resin. Purchased resin Dowex-50W-X2 $\left(\mathrm{H}^{+}\right.$ form), was used after being successively washed with dist. $\mathrm{H}_{2} \mathrm{O}$, 2 M NaOH , dist. $\mathrm{H}_{2} \mathrm{O}$ and 2 M HCl , then dist. $\mathrm{H}_{2} \mathrm{O}$ until the filtrate was neutral, and finally washed with ethanol. A heterogeneous mixture of $1(250 \mathrm{mg}, 0.65 \mathrm{mmol})$ and Dowex resin (500 mg) in EtOH $\left(10 \mathrm{~cm}^{3}\right)$ was stirred at $70^{\circ} \mathrm{C}$ for 51 h . The resin was filtered off through a glass filter and washed with $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated in vacuo, and the residue was subjected to the purification and separation procedure as described above. Flash chromatography gave a $55: 22: 11: 12$ dienol mixture ($239 \mathrm{mg}, 96 \%$) of 7a, 7b, 8a and 2a. HPLC gave 7b $(52 \mathrm{mg}, 21 \%), 7$ ($119 \mathrm{mg}, 48 \%$), 2a ($27 \mathrm{mg}, 11 \%$) and $\mathbf{8 a}$ ($17 \mathrm{mg}, 6.8 \%$), successively.

Campesta-8,14-dienol 5

Campesta-5,7-dienol $\mathbf{3}$ was prepared from campesterol supplied by Tama Biochemical Co., Ltd. according to a method reported by Kircher and Rosenstein. ${ }^{8}$ A solution of $3(7.2 \mathrm{mg}, 0.018$ mmol) and $36 \% \mathrm{HCl}\left(0.025 \mathrm{~cm}^{3}\right)$ in EtOH ($0.5 \mathrm{~cm}^{3}$) was refluxed for 3 h . After the same work-up as that for treatment of 1 with $36 \% \mathrm{HCl}$ and flash chromatography using hexaneAcOEt (4:1), the product mixture was subjected to HPLC using hexane-AcOEt (4:1) as a mobile phase. The elution at R_{t} 32.0 min gave campesta-8,14-dienol 5 ($3.8 \mathrm{mg}, 53 \%$): colorless scales, mp $111-113^{\circ} \mathrm{C}(\mathrm{MeOH}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.78(3 \mathrm{H}, \mathrm{d}$, $\left.J 6.9 \mathrm{~Hz}, 26-\mathrm{H}_{3}\right), 0.81\left(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, 27-\mathrm{H}_{3}\right), 0.82(3 \mathrm{H}, \mathrm{s}$, $\left.18-\mathrm{H}_{3}\right), 0.86\left(3 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, 28-\mathrm{H}_{3}\right), 0.93(3 \mathrm{H}, \mathrm{d}, J 6.2 \mathrm{~Hz}$, $\left.21-\mathrm{H}_{3}\right), 0.99\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 3.63(1 \mathrm{H}, \mathrm{tt}, J 10.9$ and 4.7 Hz , $3-\mathrm{H}), 5.36(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 15-\mathrm{H}) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}) 15.38,15.70,18.26$, 18.37, 18.89 and 20.19 (C-18, -19, -21, -26, -27 and -28), 21.88, $25.32,26.61,30.21,31.74,33.67,35.35,35.92,36.98$ and 38.35 (C-1, -2, -4, -6, -7, -11, -12, -16, -22 and -23), 32.46, 34.17, 38.90, 40.98 and 57.22 (C-5, -17, -20, -24 and -25), 36.57 and 45.08
(C-10 and -13), 71.03 (C-3), 117.42 (C-15), 123.12 (C-8), 140.86 (C-9), 151.14 (C-14); EI-MS m/z 398 ($\mathrm{M}^{+}, 100 \%$), 380 $\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 73\right), 365\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{3}, 68\right), 271\left(\mathrm{M}^{+}-\right.$ $\mathrm{C}_{9} \mathrm{H}_{19}, 17$), $253\left(\mathrm{M}^{+}-\mathrm{C}_{9} \mathrm{H}_{19}-\mathrm{H}_{2} \mathrm{O}, 20\right)$; HR-EI-MS m / z $\left(\mathrm{M}^{+}\right)$: Found, 398.3551. Calc. for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}, 398.3549$.

Stigmasta-8,14-dien-3ß-ol 6

Stigmasta-5,7-dien-3 β-ol 4 was prepared from stigmast-5-en3β-ol supplied by Tama Biochemical Co., Ltd. according to a method reported by Kircher. ${ }^{9}$ A solution of $4(13.4 \mathrm{mg}, 0.032$ $\mathrm{mmol})$ and $36 \% \mathrm{HCl}\left(0.05 \mathrm{~cm}^{3}\right)$ in $\mathrm{EtOH}\left(1 \mathrm{~cm}^{3}\right)$ was refluxed for 3 h . The same work-up and purification procedure as described above gave stigmasta-8,14-dien-3 3 -ol $6(6.7 \mathrm{mg}$, $50 \%): R_{\mathrm{t}} 30.0 \mathrm{~min}$; colorless scales, $\mathrm{mp} 105-106^{\circ} \mathrm{C}(\mathrm{MeOH})$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.82\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.82$ and 0.84 (each 3 H , each d, each $J 7.2 \mathrm{~Hz}, 26-$ and $\left.27-\mathrm{H}_{3}\right), 0.95\left(3 \mathrm{H}, \mathrm{d}, J 6.1 \mathrm{~Hz}, 21-\mathrm{H}_{3}\right)$, $0.99\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.85\left(3 \mathrm{H}, \mathrm{t}, J 6.8 \mathrm{~Hz}, 29-\mathrm{H}_{3}\right), 3.63(1 \mathrm{H}, \mathrm{tt}$, $J 10.8$ and $4.8 \mathrm{~Hz}, 3-\mathrm{H}), 5.36(1 \mathrm{H}, \mathrm{br}$ s, $15-\mathrm{H})$; $\delta_{\mathrm{C}}(75 \mathrm{MHz})$ $11.98,15.70,18.37,18.96,19.03$ and 19.78 (C-18, -19, -21, -26, -27 and -29), 21.87, 23.04, 25.31, 26.00, 26.61, 31.73, 33.90, $35.35,35.94,36.97$ and 38.35 (C-1, $-2,-4,-6,-7,-11,-12,-16$, $-22,-23$ and -28), 29.15, 34.40, 40.98, 45.89 and 57.15 (C-5, -17, $-20,-24$ and -25), 36.56 and 45.07 (C-10 and -13), 71.03 (C-3), 117.42 (C-15), 123.11 (C-8), 140.87 (C-9), 151.14 (C-14); EI-MS $m / z 412\left(\mathrm{M}^{+}, 100 \%\right), 394\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 72\right), 379\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\right.$ $\left.\mathrm{CH}_{3}, 64\right), 271\left(\mathrm{M}^{+}-\mathrm{C}_{10} \mathrm{H}_{21}, 18\right), 253\left(\mathrm{M}^{+}-\mathrm{C}_{10} \mathrm{H}_{21}-\mathrm{H}_{2} \mathrm{O}\right.$, 19); HR-EI-MS $m / z\left(\mathrm{M}^{+}\right)$: Found, 412.3714. Calc. for $\mathrm{C}_{29} \mathrm{H}_{48} \mathrm{O}$, 412.3705 .

Treatment of dienols, $7 \mathrm{a}, \mathrm{b}$ and $2 \mathrm{a}, \mathrm{b}$, with $\mathbf{3 6 \%} \mathbf{H C l}$ at reflux temperature

Treatment of 7a. A solution of $\mathbf{7 a}(15 \mathrm{mg}, 0.039 \mathrm{mmol})$ and $36 \% \mathrm{HCl}\left(0.05 \mathrm{~cm}^{3}\right)$ in $\mathrm{EtOH}\left(1.0 \mathrm{~cm}^{3}\right)$ was refluxed for 3 h . After the same work-up as that for treatment of $\mathbf{1}$ with $36 \% \mathrm{HCl}$, flash chromatography using hexane-AcOEt ($4: 1$) as an eluent gave a 7:90:3 mixture of 7a, 2a and 10a (14 mg, 93%).

Treatment of $\mathbf{7 b}$. A solution of $\mathbf{7 b}(55 \mathrm{mg}, 0.14 \mathrm{mmol})$ and $36 \% \mathrm{HCl}\left(0.11 \mathrm{~cm}^{3}\right)$ in $\mathrm{EtOH}\left(2.2 \mathrm{~cm}^{3}\right)$ was refluxed. After 3 h , the ${ }^{1} \mathrm{H}$ NMR spectrum showed that $c a .45 \%$ of the starting material 7b still remained; thus, the reaction was further continued for 8 h . After the same work-up as that for treatment of $\mathbf{1}$ with $36 \% \mathrm{HCl}$ at refluxing temperature, flash chromatography using hexane- $\mathrm{AcOEt}(4: 1)$ as an eluent gave an enone mixture consisting of 11-13 ($21 \mathrm{mg}, 38 \%$) and a 6:94 mixture of $\mathbf{7 b}$ and 2b ($32 \mathrm{mg}, 58 \%$). The enone mixture was subjected to HPLC using hexane-AcOEt (100:1) as a mobile phase, affording a 88:12 mixture ($R_{\mathrm{t}} 13.4 \mathrm{~min}, 7.8 \mathrm{mg}, 14 \%$) of 5β-cholest-14-en3 -one $\mathbf{1 2}$ and 14 -epi- 5β-cholest- 8 -en- 3 -one 13 , and 5β-cholest-8(14)-en-3-one 11 ($R_{\mathrm{t}} 14.0 \mathrm{~min}, 12 \mathrm{mg}, 22 \%$). This mixture was separated by HPLC using hexane $-{ }^{i} \mathrm{PrOH}$ (100:1) to give $\mathbf{1 2}$ $\left(R_{\mathrm{t}} 8.6 \mathrm{~min}, 5.0 \mathrm{mg}\right), 13\left(R_{\mathrm{t}} 9.2 \mathrm{~min}, 1.1 \mathrm{mg}\right)$ and their mixture $(4.2 \mathrm{mg})$.
5β-Cholest-8(14)-en-3-one 11. Colorless foam; $\delta_{\mathrm{H}}(600 \mathrm{MHz})$ $0.869\left(3 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, 26-\mathrm{H}_{3}\right), 0.872\left(3 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, 27-\mathrm{H}_{3}\right)$, $0.87\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.90\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.95(3 \mathrm{H}, \mathrm{d}, J 6.4 \mathrm{~Hz}$, $\left.21-\mathrm{H}_{3}\right), 1.08$ and 1.39 (each 1 H , each m, 22- H_{2}), $1.14(2 \mathrm{H}$, $\left.24-\mathrm{H}_{2}\right), 1.15$ and 1.36 (each 1 H , each m, 23- H_{2}), $1.16(1 \mathrm{H}, \mathrm{m}$, $17-\mathrm{H}), 1.21(1 \mathrm{H}, \mathrm{m}, 12 \alpha-\mathrm{H}), 1.28$ and 1.84 (each 1 H , each m, $\left.6-\mathrm{H}_{2}\right), 1.40$ and 1.85 (each 1 H , each m, $16-\mathrm{H}_{2}$), $1.47(1 \mathrm{H}, \mathrm{m}$, $20-\mathrm{H}), 1.49(1 \mathrm{H}$, ddd, $J 14.2,14.2$ and $4.9 \mathrm{~Hz}, 1 \beta-\mathrm{H}), 1.53(1 \mathrm{H}$, $\mathrm{m}, 25-\mathrm{H}), 1.58\left(2 \mathrm{H}, 11-\mathrm{H}_{2}\right), 1.83(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 1.93(1 \mathrm{H}, \mathrm{m}$, $7 \alpha-\mathrm{H}), 2.01(1 \mathrm{H}, \mathrm{m}, 12 \beta-\mathrm{H}), 2.02(1 \mathrm{H}, \mathrm{m}, 1 \alpha-\mathrm{H}), 2.08(1 \mathrm{H}$, ddd, $J 14.7,3.9$ and $2.4 \mathrm{~Hz}, 4 \beta-\mathrm{H}$), 2.21 and 2.27 (each 1 H , each m, $\left.15-\mathrm{H}_{2}\right), 2.24(1 \mathrm{H}, \mathrm{m}, 2 \beta-\mathrm{H}), 2.26(1 \mathrm{H}, \mathrm{m}, 7 \beta-\mathrm{H}), 2.42(1 \mathrm{H}$, ddd, $J 14.7,14.2$ and $5.4 \mathrm{~Hz}, 2 \alpha-\mathrm{H}), 2.52(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}), 2.82(1 \mathrm{H}$, dd, $J 14.7$ and $14.2 \mathrm{~Hz}, 4 \alpha-\mathrm{H})$; $\delta_{\mathrm{C}}(150 \mathrm{MHz}) 18.14(\mathrm{C}-18), 19.11$ (C-21), 19.84 (C-11), 22.57 (C-26), 22.80 (C-27), 22.99 (C-19),
23.75 (C-23), 23.91 (C-7), 25.95 (C-15), 26.77 (C-6), 27.10 (C-16), 28.02 (C-25), 34.44 (C-20), 35.87 (C-9), 35.96 (C-22), 36.21 (C-1), 36.42 (C-10), 37.15 (C-12), 37.72 (C-2), 39.55 (C-24), 42.13 (C-4), 42.80 (C-13), 44.51 (C-5), 56.99 (C-17), 125.40 (C-8), 143.35 (C-14), 213.18 (C-3); EI-MS $m / z 384$ (M ${ }^{+}$, $100 \%), 369\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 26\right), 351(65), 271\left(\mathrm{M}^{+}-\mathrm{C}_{8} \mathrm{H}_{17}, 30\right)$; HR-EI-MS $m / z\left(\mathrm{M}^{+}\right)$: Found, 384.3391. Calc. for $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}$, 384.3392.
5β-Cholest-14-en-3-one 12. Colorless amorphous powder; $\delta_{\mathrm{H}}(600 \mathrm{MHz}) 0.870\left(3 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, 26-\mathrm{H}_{3}\right), 0.872(3 \mathrm{H}, \mathrm{d}, J 6.8$ $\left.\mathrm{Hz}, 27-\mathrm{H}_{3}\right), 0.92\left(3 \mathrm{H}, \mathrm{d}, J 6.0 \mathrm{~Hz}, 21-\mathrm{H}_{3}\right), 0.93\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right)$, $1.03\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 1.05$ and 1.38 (each 1 H , each m, 22- H_{2}), $1.08-1.22\left(2 \mathrm{H}, 24-\mathrm{H}_{2}\right), 1.17$ and 1.37 (each 1 H , each m, 23- H_{2}), $1.32(1 \mathrm{H}$, ddd, $J 13.2,13.2$ and $3.4 \mathrm{~Hz}, 12 \alpha-\mathrm{H}), 1.33$ and 1.94 (each 1 H , each $\left.\mathrm{m}, 6-\mathrm{H}_{2}\right), 1.42(1 \mathrm{H}, \mathrm{m}, 1 \beta-\mathrm{H}), 1.42$ and 1.50 (each 1 H , each $\left.\mathrm{m}, 11-\mathrm{H}_{2}\right), 1.47(1 \mathrm{H}, \mathrm{m}, 7 \alpha-\mathrm{H}), 1.53(1 \mathrm{H}, \mathrm{m}$, $9-\mathrm{H}), 1.53(1 \mathrm{H}, \mathrm{m}, 25-\mathrm{H}), 1.55(1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}), 1.60(1 \mathrm{H}, \mathrm{m}$, $20-\mathrm{H}), 1.73(1 \mathrm{H}, \mathrm{m}, 7 \mathrm{\beta}-\mathrm{H}), 1.82(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 1.93$ and 2.31 (each 1 H , each m, 16-H2), $2.02(1 \mathrm{H}$, ddd, $J 14.7,4.9$ and 2.4 Hz , $4 \beta-\mathrm{H}), 2.06(1 \mathrm{H}$, ddd, $J 13.2,2.4$ and $2.4 \mathrm{~Hz}, 12 \beta-\mathrm{H}), 2.08(1 \mathrm{H}$, $\mathrm{m}, 1 \alpha-\mathrm{H}), 2.12(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.16(1 \mathrm{H}, \mathrm{m}, 2 \beta-\mathrm{H}), 2.34(1 \mathrm{H}$, ddd, $J 14.7,14.7$ and $5.4 \mathrm{~Hz}, 2 \alpha-\mathrm{H}), 2.68(1 \mathrm{H}, \mathrm{dd}, J 14.7$ and $14.2 \mathrm{~Hz}, 4 \alpha-\mathrm{H}), 5.20(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}) ; \delta_{\mathrm{C}}(150 \mathrm{MHz}) 16.88$ (C-18), 18.95 (C-21), 22.04 (C-11), 22.40 (C-19), 22.57 (C-26), 22.80 (C-27), 23.57 (C-7), 23.68 (C-23), 26.30 (C-6), 28.04 (C-25), 33.89 (C-20), 34.83 (C-8), 35.08 (C-10), 35.65 (C-16), 36.06 (C-22), 36.85 (C-1), 37.28 (C-2), 39.53 (C-24), 40.35 (C-9), 42.26 (C-4), 42.43 (C-12), 44.27 (C-5), 47.21 (C-13), 58.82 (C-17), 117.61 (C-15), 154.90 (C-14), 213.19 (C-3); EI-MS $m / z 384\left(\mathrm{M}^{+}, 9 \%\right), 271\left(\mathrm{M}^{+}-\mathrm{C}_{8} \mathrm{H}_{17}, 100\right), 253$ (13); HR-EI-MS $m / z\left(\mathrm{M}^{+}\right)$: Found, 384.3386. Calc. for $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}$, 384.3392.

14-epi- 5β-Cholest- 8 -en-3-one 13. Colorless amorphous powder; $\delta_{\mathrm{H}}(600 \mathrm{MHz}) 0.864\left(3 \mathrm{H}, \mathrm{d}, J 6.4 \mathrm{~Hz}, 26-\mathrm{H}_{3}\right), 0.867$ $\left(3 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, 27-\mathrm{H}_{3}\right), 0.90\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.93(3 \mathrm{H}, \mathrm{d}, J 6.4$ $\mathrm{Hz}, 21-\mathrm{H}_{3}$), 1.01 and 1.37 (each 1 H , each m, 22- H_{2}), 1.07 and 1.98 (each 1 H , each m, $15-\mathrm{H}_{2}$), $1.14\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 1.14(2 \mathrm{H}$, $24-\mathrm{H}_{2}$), 1.15 and 1.37 (each 1 H , each $\mathrm{m}, 23-\mathrm{H}_{2}$), 1.27 and 1.75 (each 1 H , each m, $\left.16-\mathrm{H}_{2}\right), 1.37(1 \mathrm{H}, \mathrm{m}, 12 \beta-\mathrm{H}), 1.37(1 \mathrm{H}, \mathrm{m}$, $17-\mathrm{H}), 1.40$ and 1.97 (each 1 H , each m, $6-\mathrm{H}_{2}$), $1.49(1 \mathrm{H}$, $\mathrm{m}, 20-\mathrm{H}), 1.52(1 \mathrm{H}, \mathrm{m}, 25-\mathrm{H}), 1.58(1 \mathrm{H}, \mathrm{m}, 1 \beta-\mathrm{H}), 1.62(1 \mathrm{H}, \mathrm{m}$, $12 \alpha-\mathrm{H}), 1.73$ and 2.15 (each 1 H , each m, $7-\mathrm{H}_{2}$), $1.79(1 \mathrm{H}$, dd, $J 8.3$ and $8.3 \mathrm{~Hz}, 14-\mathrm{H}$), 1.85 and 2.00 (each 1 H , each m, $\left.11-\mathrm{H}_{2}\right), 1.92(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.09(1 \mathrm{H}, \mathrm{m}, 1 \alpha-\mathrm{H}), 2.11(1 \mathrm{H}, \mathrm{m}$, $2 \alpha-\mathrm{H}), 2.22(1 \mathrm{H}, \mathrm{m}, 2 \beta-\mathrm{H}), 2.25(1 \mathrm{H}$, ddd, $J 14.2,5.4$ and 2.0 $\mathrm{Hz}, 4 \beta-\mathrm{H}$), 2.33 (1 H , ddd, $J 14.2,9.8$ and $1.0 \mathrm{~Hz}, 4 \alpha-\mathrm{H}$); $\delta_{\mathrm{C}}(150$ $\mathrm{MHz}) 19.84$ (C-21), 21.17 (C-11), 22.57 (C-26), 22.80 (C-27), 23.11 (C-18), 24.16 (C-6), 24.42 (C-23), 26.10 (C-7), 26.68 (C-19), 28.01 (C-25), 28.50 (C-16), 30.67 (C-15), 33.55 (C-20), 35.64 (C-22), 35.68 (C-1), 35.68 (C-12), 36.69 (C-10), 38.48 (C-2), 39.50 (C-24), 41.21 (C-13), 42.72 (C-5), 42.89 (C-4), 52.22 (C-17), 54.11 (C-14), 130.15 (C-9), 132.63 (C-8), 213.44 (C-3); EI-MS m/z $384\left(\mathrm{M}^{+}, 100 \%\right)$, $369\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 44\right), 351$ (48), 314 (95), $271\left(\mathrm{M}^{+}-\mathrm{C}_{8} \mathrm{H}_{17}, 46\right)$; HR-EI-MS $m / z\left(\mathrm{M}^{+}\right)$: Found, 384.3396. Calc. for $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}, 384.3392$.

Treatment of 2a. A solution of $\mathbf{2 a}(15 \mathrm{mg}, 0.039 \mathrm{mmol})$ and $36 \% \mathrm{HCl}\left(0.05 \mathrm{~cm}^{3}\right)$ in $\mathrm{EtOH}\left(1.0 \mathrm{~cm}^{3}\right)$ was refluxed for 3 h . After the same work-up as that for treatment of 1 with 36% HCl , flash chromatography using hexane-AcOEt (4:1) as eluent gave a 6:92:2 mixture of 7a, $\mathbf{2 a}$ and 10a ($14 \mathrm{mg}, 93 \%$).

Treatment of $\mathbf{2 b}$. A solution of $\mathbf{2 b}(35 \mathrm{mg}, 0.091 \mathrm{mmol})$ and $36 \% \mathrm{HCl}\left(0.07 \mathrm{~cm}^{3}\right)$ in $\mathrm{EtOH}\left(1.4 \mathrm{~cm}^{3}\right)$ was refluxed for 8 h . The same work-up and column chromatography as those for treatment 7b gave an enone mixture consisting of $\mathbf{1 1 - 1 3}$ (11 mg , 31%) and a $2: 98$ mixture of $\mathbf{7 b}$ and $\mathbf{2 b}(19 \mathrm{mg}, 54 \%)$. The HPLC of the enone mixture using hexane-AcOEt $(100: 1)$ as eluent gave a $86: 14$ mixture of $\mathbf{1 2}$ and $\mathbf{1 3}(4.7 \mathrm{mg}, 13 \%)$ and $\mathbf{1 1}(5.6$ mg, 16\%).

Acknowledgements

We gratefully acknowledge generous gifts of campesterol and stigmast-5-en- 3β-ol from Tama Biochemical Co., Ltd. This work was supported in part by Grant-in-Aid for Scientific Research (C) to H. Seto (No. 09672183) and Scientific Research (B) to S. Fujioka (No. 10460050) from the Ministry of Education, Science, Sports and Culture of Japan.

References

1 M. Fieser, W. E. Rosen and L. F. Fieser, J. Am. Chem. Soc., 1952, 74, 5397.

2 L. F. Fieser and G. Ourisson, J. Am. Chem. Soc., 1953, 75, 4404.

3 F. Gautschi and K. Bloch, J. Biol. Chem., 1958, 233, 1343.
4 I. A. Watkinson, D. C. Wilton, K. A. Munday and M. Akhtar, Biochem. J., 1971, 121, 131.
5 Y.-K. Paik, J. M. Trzaskos, A. Shafiee and J. L. Gaylor, J. Biol. Chem., 1984, 259, 13413.
6 M. Taton, P. Benveniste and A. Rahier, Eur. J. Biochem., 1989, 185, 605.

7 J.-C. Jang, S. Fujioka, M. Tasaka, H. Seto, S. Takatsuto, A. Ishii, M. Aida, S. Yoshida and J. Sheen, Genes Dev., in the press.

8 H. W. Kircher and F. U. Rosenstein, Lipids, 1974, 9, 333.
9 H. W. Kircher, Lipids, 1974, 9, 623.
10 R. M. Kellogg, in Comprehensive Organic Syntheses, ed. B. M. Trost and I. Fleming, Pergamon Press, Oxford, 1991, vol. 8, pp. 79-106; and references cited therein.
11 E. J. Taylor and C. Djerassi, J. Org. Chem., 1977, 42, 3571.

